Óbudai University					Institute of Mechatronics and Vehicle			
Donát Bánki Faculty of Mechanical and Safety Engineering					Engineering			
Course name and Neptun-	code: Optin	nizatior	n Methods, BMX	(O)	PE1MNE	Cr	redits: 4	
Full time, 1st Semester of the	Academic y	ear 202	21/22.					
Faculties in which the subject	ct is taught:	MSc in	Mechatronics					
Supervised by: Dr. Frigyik Béla András Lecturers: Dr. Frigy					yik Béla A	ndrás		
Prerequisites conditions: (No	eptun Codes)						
Lessons per week:	Theory: 2	Practic	e (in Auditorium)): 1	Lab: 0		Consultation:	
Exam type (s,v,f):	exam							
			The Syllabus					
Aim: Essentially all enginee	ring probler	ns invol	lve some kind of o	opti	mization at	some p	oint. The aim of this	S
course is to introduce a cour	ole of commo	on optin	nization methods:	Th	ie continuoi	us metho	ods can often help to	О
understand the problem bette	er. While the	e discret	te methods almost	t alv	ways provid	de us wi	th a practical, albeit	
cometimes only subontimal	colution						_	

Schedule				
Weeks	Topics			
1.	Local extremum (minimum or maximum). Finding local extremum of functions of one or two variables.			
2.	Finding local extremum of function of more than two variables. Convexity and basics of convex optimization.			
3.	Conditional optimization. Method of Lagrange multipliers.			
4.	Application of method of Lagrange multipliers. Gradient method.			
5.	Linear inequalities. Linear programming: Graphical solution.			
6.	Linear programming, simplex method.			
7.	Integer programming. Branch-and-bound method.			
8.	1st Midterm			
9.	Basics graph theory. Graph algorithms.			
10.	Optimal paths. Dijkstra algorithm. Bellman-Ford method.			
11.	Maximal matching in bipartite graphs. Hungarian method.			
12.	Maximal matching in bipartite graphs with weights. Egerváry's method.			
13.	2nd Midterm			
14.	Retake			
<u> </u>				

Requirements					
Weeks	Tests				
8	1st Midterm				
13	2nd Midterm				
14	Retake				

The evaluation criterias

Classes and tests will be held in person. Any change due to the pandemic situation will be announced in the Moodle course.

All main areas of the course are evaluated by test papers. The course is to be considered successfully completed if and only if both tests are written with mark minimum 2 (50%), as a prerequisite for obtaining a **signature**.

Based on the Study Regulations III.6.(4), the student may receive an **offered grade** if they have written both tests successfully.

All matters which are not covered in this document, the Study and Examination Rules and the provisions of the Study Regulations, valid at Óbuda University, prevails.

The semester closing method (method of examination: written, oral, testing, etc.).

Written exam

Literature:

- Thomas' Calculus, Pearson, 2018
- Ronald L. Rardin, Optimization in Operations Research, Pearson, 2015

Quality Assurance: